Report to:



PACIFIC BOOKER MINERALS INC.

Morrison Project HPGR Trade-off Study

Document No. 0652720100-REP-R0004-02

#### Third Party Disclaimer

The content of this document is not intended for the use of, nor is it intended to be relied upon by any person, firm or corporation, other than the client and Wardrop Engineering Inc. Wardrop Engineering Inc. denies any liability whatsoever to other parties for damages or injury suffered by such third party arising from use of this document by them, without the express prior written authority of Wardrop Engineering Inc. and our client. This document is subject to further restrictions imposed by the contract between the client and Wardrop Engineering Inc. and these parties' permission must be sought regarding this document in all other circumstances.

#### Confidential

This document is for the confidential use of the addressee only. Any retention, reproduction, distribution or disclosure to parties other than the addressee is prohibited without the express written authorization of Wardrop Engineering Inc.

Report to:



## PACIFIC BOOKER MINERALS INC.

## MORRISON PROJECT HPGR TRADE-OFF STUDY

| MAY 2008      |                                 |      |
|---------------|---------------------------------|------|
|               |                                 |      |
| Prepared by   | Pullitton                       | Date |
|               | Raytcho Anguelov, P.Eng.        |      |
| Reviewed by   | #-Ghaff                         | Date |
|               | Hassan Ghaffan, P.Eng.          |      |
| Reviewed by   | k                               | Date |
|               | Jake Alexander, MBA             |      |
| Authorized by | 25tt                            | Date |
|               | David Sutherland, B.Sc., B.Eng. |      |

|--|

May 12, 2008

Mo 2 (2, 08 May 12, 2008

r OY May 12, 2008

May 12, 2008

RA/alm

. .

....

## WARDROP

Suite 800, 555 West Hastings Street, Vancouver, British Columbia V6B 1M1 Phone: 604-408-3788 Fax: 604-408-3722 E-mail: vancouver@wardrop.com



## **REVISION HISTORY**

|         |             | PREPARED BY      | REVIEWED BY           | APPROVED BY      |                                 |
|---------|-------------|------------------|-----------------------|------------------|---------------------------------|
| REV. NO | ISSUE DATE  | AND DATE         | AND DATE              | AND DATE         | DESCRIPTION OF REVISION         |
| 00      | Dec. 12, 07 | R.A. Dec. 12, 07 | J.A. Dec. 12, 07      | H.G. Dec. 12, 07 | Final draft issue to client.    |
| 01      | Dec. 21, 07 | R.A. Dec. 21, 07 | H.G./J.A. Dec. 21, 07 | D.S. Dec. 21, 07 | Final report to client.         |
| 02      | May 12, 08  | R.A. May 12, 08  | H.G. May 12, 08       | D.S. May 12, 08  | Final report to client revised. |
|         |             |                  |                       |                  |                                 |
|         |             |                  |                       |                  |                                 |



## EXECUTIVE SUMMARY

The Morrison porphyry copper/gold deposit is located in Central British Columbia, 35 km north of the village of Granisle. The deposit will be mined by open pit methods, with a 30,000 tonne per day (**t/d**) or 10.95 millions tonnes per year (**Mt/a**) mineral processing plant for production of copper and molybdenum concentrates. The measured/indicated mineral resource is 206,869,000 tonnes (**t**) grading 0.46% Cu equivalent. This consists of 0.39% Cu, 0.20g/t Au, and 0.005% Mo.

This report is a trade-off study to evaluate the application of High Pressure Grinding Rolls (**HPGR**) as an alternative technology to the conventional semi-autogenous grinding (**SAG**) milling process for the Morrison Project.

The processing plant is designed to operate at 30,000 t/d capacity with an availability of 92%.

Results of the trade-off study indicate that the application of HPGR's to the Morrison project would result in significant operational cost savings in the comminution circuit amounting to more than 23%. The accuracy of the trade-off study estimate is in the range  $\pm 25\%$  and all costs recorded are in Canadian (**CDN**) currency.

This trade-off study indicates that the introduction of the HPGR as a replacement for the conventional SAG milling process offers significant benefits. It is recommended that a detailed feasibility study be carried out using HPGR in the comminution circuit.

With the HPGR in place of the SAG mill, the power requirements of combined crushing-grinding circuits indicates a gross installed power reduction for the HPGR option of 3.67 megawatts (**MW**). The resulting power savings translates into an operating cost savings of CDN\$0.08/t. The savings in power costs is based upon a power unit cost of CDN\$0.032/kWh. For consumables, this reduction was estimated to be about CDN\$0.59/t. With respect to capital cost, the HPGR option is CDN\$9.45 million (**M**) more than the SAG option; however, within the accuracy level of the study, the capital costs for both options can be considered to be similar.



## TABLE OF CONTENTS

| EXECU | TIVE SI | JMMARY                      |                                    | . I         |
|-------|---------|-----------------------------|------------------------------------|-------------|
| 1.0   | INTRO   | DUCTION                     |                                    | 1           |
| 2.0   | ВАСКО   | GROUND                      |                                    | 2           |
| 3.0   | TESTW   | /ORK                        |                                    | 4           |
|       | 3.1     | HPGR TES                    | STWORK                             | 4           |
| 4.0   | COMM    |                             | CIRCUITS                           | 5           |
|       | 4.1     | Assumptio<br>4.1.1<br>4.1.2 | ons<br>SAG Circuit<br>HPGR Circuit | 5<br>5<br>6 |
| 5.0   | CAPIT   | al and o                    | PERATING COST COMPARISON           | 7           |
| 6.0   | COMM    | ENTS                        |                                    | 9           |
| 7.0   | CONCI   | USIONS                      |                                    | 0           |

## LIST OF TABLES

| Table 3.1 | Grinding Test Results               | 4 |
|-----------|-------------------------------------|---|
| Table 4.1 | Plant Data                          | 6 |
| Table 5.1 | Capital and Operating Cost Analysis | 8 |

## LIST OF APPENDICES

- APPENDIX A PROCESS DESIGN CRITERIA AND FLOWSHEETS
- APPENDIX B LAYOUTS
- APPENDIX C OPERATING COSTS
- APPENDIX D CAPITAL COSTS
- APPENDIX E HIGH-PRESSURE GRINDING TESTS ON COPPER/GOLD/MOLYBDENUM ORE



## 1.0 INTRODUCTION

Wardrop Engineering Inc. (**Wardrop**) was requested by Pacific Booker Minerals Inc. (**Pacific Booker**) to prepare an order of magnitude trade-off study to evaluate the application of HPGR as an alternative technology to the conventional SAG milling technology for the Morrison Project.



## 2.0 BACKGROUND

HPGR have been in operation for some time and were originally developed and applied in the cement industry. The technology was introduced into the mining industry in the early 1980s, with the first HPGRs used for the crushing of kimberlite in diamond mines. The application and advantages of using these grinding roles to extract diamonds is well established. HPGR technology was also successfully introduced and applied in the iron ore industry and for the crushing of limestone.

The HPGR consists of a pair of counter rotating rolls, one fixed and the other floating. The feed is introduced to the gap in between the rolls and is crushed by the mechanism of inter-particle breakage. The grinding force applied to the crushing zone is controlled by a hydro-pneumatic spring on the floating roll. Speeds of the rolls are also adjustable to obtain optimum grinding conditions.

There are several benefits to using HPGRs in the mining industry. The benefits are significant when considering HPGRs as a replacement to SAG mills, mainly because of the following:

- large savings in energy costs
- reduced grinding media consumption and operating costs
- faster equipment delivery schedules
- produces a finer product.

While the benefits of HPGR crushing in terms of lower energy costs and superior interparticle crushing are well known, the mining industry was reluctant to embrace this technology due to the problems of high wear. Over the past few years, major advances have been made in wear protection technologies. These advances have been applied to the roll surfaces, which have reduced wear significantly, thereby making this technology more attractive for hard rock mining applications.

The main HPGR manufacturers are Polysius Corporation (Polysius), KHD Humboldt Wedag (KHD), and Koppern Machinery Australia Pty Ltd. (Koppern), all from Germany. Polysius favours a high aspect ratio design (large diameter, small width), while KHD and Koppern prefer a low aspect ratio. The high aspect ratio design provides for a larger operating gap and reduced wear. Koppern's machine, when compared to Polysius and KHD, is smaller with a maximum roll diameter restriction of 1.5 m due to manufacturing constraints and surface wear. All these companies have independently spent considerable time and resources to reduce wear. They have now come up with superior rolls, which include the use of studs, segments, edge protection inserts, and advanced materials of construction.



Mining companies are now beginning to incorporate HPGR technology. Freeport is a mining company that has taken the lead in introducing the HPGR at the Cerro Verde copper mine in Peru. The circuit at Cerro Verde incorporates four HPGR units (2.4 m diameter x 1.7 m wide; 5,000 kW) processing 2,500 tonnes per hour (**t/h**) instead of traditional SAG mill circuit.

In July 2007, Wardrop visited the Cerro Verde mine in Peru and feedback from plant personnel indicated that the HPGRs are performing well and met the specifications.

The Adanac Ruby Creek molybdenum project in Canada as well as Boddingtons and Bendigo gold projects in Australia, which are all nearing completion, have also included HPGR technology. Freeport McMoran uses two HPGR units (2.0 m diameter x 1.8 m wide; 3,600 kW) to process 1,450 t/h at their Grasberg Mine in Irian Jaya, Indonesia.



## 3.0 TESTWORK

SGS Mineral Services conducted grinding testwork for the Feasibility Study on 82 drill core samples from the Morrison deposit, in order to conduct CEET design study for a comminution circuit in August 2007. The results of the tests are shown in Table 3.1 below.

Table 3.1Grinding Test Results

|                 | Crusher | SPI       | BWi     |
|-----------------|---------|-----------|---------|
|                 | Index   | (minutes) | (kWh/t) |
| Samples Average | 13.7    | 105.2     | 16.4    |

The results show the ore has an average a Crusher Index of 13.7, SAG Power Index (**SPI**) of 105 minutes and Ball Bond Work Index (**BWi**) of 16.4. Results from the testwork indicate that the material sample has a medium hardness from the perspective of semi-autogenous milling.

SGS Mineral Services testwork details are presented in "Ore Grindability Characterization and Feasibility Grinding Circuit Design for Morrison Project, Project 11474-001 Interim Report, August 2007" as part of the feasibility study.

### 3.1 HPGR TESTWORK

Discussions were held with all HPGR manufacturers and, in September 2007, Polysius Research Centre in Germany was contracted by Pacific Booker to conduct testwork on high pressure comminution. The results show that the specific energy is 2.0 kWh/t with a specific throughput of 220 ts/hm<sup>3</sup>.

For the purposes of the Feasibility study, the Polysius 24/17 HPGR model was determined for the circuit. This machine is capable of processing 30,000 t/d and is currently in operation at Cerro Verde.

It is assumed that the HPGR will produce a product with a  $P_{80}$  of 3.8 mm.

For more details on the HPGR, see the report by Polysius entitled "High-Pressure Grinding Tests on Copper/Gold/Molybdenum Ore from the Morrison Project – British Columbia, Canada", attached as Appendix E.



## 4.0 COMMINUTION CIRCUITS

A brief description of the SAG and HPGR circuits is given below. As part of the evaluation, it was decided to focus the trade-off study on replacing the conventional SAG mill in the comminution circuit with an equivalent duty HPGR unit. Other potential circuit configurations utilizing HPGR were not considered in the study.

### 4.1 ASSUMPTIONS

The following assumptions have been made in this trade-off study:

| • | Plant feed rate, Mt/a                      | 10.95      |
|---|--------------------------------------------|------------|
| • | Plant feed rate, t/h                       | 1,359      |
| • | Plant availability/running time, %         | 92         |
| • | Product $P_{80}$ (Flotation feed), $\mu m$ | 150        |
| • | Budget quotations accuracy, $\pm$ %        | 25         |
| • | Power cost, per kWh                        | CDN\$0.032 |

Detailed process design criteria for both SAG and HPGR options are included in Appendix A.

### 4.1.1 SAG CIRCUIT

To produce an average 1,359 t/h at a  $P_{80}$  of 150  $\mu m,$  the conventional circuit is comprised of:

- a single SAG mill of 10.36 m diameter and 5.79 m length, which uses a maximum of 10,400 kW
- two ball mills of 6.10 m diameter and 10.21 m length, which uses a maximum of 6,700 kW each
- a 315 kW cone crusher.

The front end of the circuit is comprised of run-of-mine material feeding directly into a gyratory crusher. The product from the crusher feeds the 30,000 t live capacity crushed ore stockpile. Apron feeders are used to feed the conveyors, which transport the crushed material to one SAG mill. The product from the SAG mill feeds the SAG mill screen, with the screen undersize reporting to a ball mill and the oversize going to a pebble crusher. The crushed product is returned to the SAG mill.



The SAG ball mill circuit flowsheet including material balance is given in Appendix A.

#### 4.1.2 HPGR CIRCUIT

The simplified HPGR crushing circuit is shown in the flowsheet entitled "HPGR Option Trade-off Study". From the stockpile, apron feeders will transport the ore to a double-deck screen with the oversize feeding a cone crusher and undersize material reporting to the HPGR surge bin. The crushed material is returned as feed to a second set of double-deck screens. The HPGR unit will be fed from the surge bin using belt feeders. The HPGR product will be screened with oversize returned to the HPGR feed surge bin. Screen undersize from the screen will be fed to the ball mill pump boxes, as shown in Flowsheet No. 3. The ball mills pump box feeds two sets of cyclones for classification with cyclone product reporting as flotation feed material.

The HPGR circuit flowsheets including material balance are available in Appendix A.

| Plant Concept                     | SAG Circuit                                     | HPGR Circuit                                                                               |
|-----------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|
| Equipment                         | 1 SAG Mill<br>(10.36 x 5.79 m)<br>10.4 MW       | 1 Secondary Crusher 750 kW                                                                 |
|                                   | 1 Pebble crusher<br>315 kW                      | 1 HPGR 5.3 MW                                                                              |
|                                   | 2 Ball Mills<br>(6.1 m x 10.2 m)<br>6.7 MW each | 2 Ball Mills<br>(6.1 m x 10.2 m)<br>6.7 MW each (installed-actual consumption<br>10% less) |
|                                   | Screens, conveyors<br>0.5 MW                    | Screens and Conveyors<br>1.5 MW                                                            |
| Total Drive Capacity<br>Installed | 24.62 MW                                        | 20.95 MW                                                                                   |

#### Table 4.1Plant Data

Appendix B shows the general layout for both options.



## 5.0 CAPITAL AND OPERATING COST COMPARISON

Operating costs were determined for both HPGR and SAG options. Details are shown in Appendix C.

Both the HPGR and SAG circuit capital costs are based on budget estimates received from suppliers. A detailed capital cost summary is included in Appendix D.

Estimates for maintenance and consumables costs for each of the options are based on information received from suppliers on similar projects. An estimate for savings in the shipment of mill balls resulting from the replacement of SAG with HPGR is also included.

The cost of power is CDN\$0.032/kWh.

Table 5.1 compares the capital and operating costs of an HPGR circuit versus a conventional SAG milling circuit.

This Trade-off Study was based on plant operation with electrical power only. The accuracy of this estimate is in the range  $\pm 25\%$ .

The HPGR option, with respect to capital cost, can be considered to be the same as the SAG option within the accuracy level of this study.

The HPGR option indicates significant savings in total operational costs amounting to CDN\$0.67/t annually when compared to the SAG mill option.

The detailed operating and capital cost estimates are presented in Appendix C and Appendix D, respectively.

### WARDROP

### Table 5.1 Capital and Operating Cost Analysis

|                                                          | SAG               |            | HPGR   |                             |                   |            |        |                             |
|----------------------------------------------------------|-------------------|------------|--------|-----------------------------|-------------------|------------|--------|-----------------------------|
|                                                          |                   |            |        | Operating Cost (\$/t)       |                   |            |        | Operating Cost (\$/t)       |
|                                                          | Capital Cost (\$) | Power (MW) | Energy | Supplies/Maintenance/Labour | Capital Cost (\$) | Power (MW) | Energy | Supplies/Maintenance/Labour |
| OPERATING COST SUMMARY                                   |                   |            |        | ·                           | •                 | •          |        |                             |
| Labour                                                   |                   |            |        | 0.239                       |                   |            |        | 0.252                       |
| Supplies                                                 |                   |            |        | 2.100                       |                   |            |        | 1.498                       |
| Power                                                    |                   | 22.24      | 0.52   |                             |                   | 17.91      | 0.44   |                             |
| CAPITAL COST SUMMARY                                     |                   |            |        |                             |                   |            |        |                             |
| Direct Costs                                             |                   |            |        |                             |                   |            |        |                             |
| Reclaim Conveyor                                         | 592,000           |            |        |                             | 987,000           |            |        |                             |
| Secondary/Tertiary Crushing Equipment (comprised of Cone |                   |            |        |                             |                   |            |        |                             |
| Crusher, HPGR Crusher, Vibrating Screens - Primary and   | -                 |            |        |                             | 23,877,000        |            |        |                             |
| Secondary, Transfer Conveyors, Steel chutes and bins)    |                   |            |        |                             |                   |            |        |                             |
| Secondary/Tertiary Crushing Building                     | -                 |            |        |                             | 6,532,000         |            |        |                             |
| Grinding Equipment, comprised of:                        |                   |            |        |                             |                   | i          |        |                             |
| HPGR OPTION: 2 Ball Mills, Pumps, Cyclopacks             |                   |            |        |                             | 23,225,000        |            |        |                             |
| • SAG OPTION: SAG Mill, 2 Ball Mills, Pumps, Cyclopac    | 46,855,000        |            |        |                             |                   |            |        |                             |
| Girnding Building                                        | 14,789,000        |            |        |                             | 14,221,000        |            |        |                             |
| Total Indirect Costs                                     | 20,345,000        |            |        |                             | 21,957,000        |            |        |                             |
| Contingency (15% of Direct costs)                        | 12,387,000        |            |        |                             | 13,620,000        |            |        |                             |
| TOTAL                                                    | \$94,968,000      | 22.24      | 0.52   | 2.340                       | \$ 104,419,000    | 17.91      | 0.44   | 1.750                       |
| TOTAL - OPERATING COST (\$/t)                            |                   |            |        | 2.86                        |                   |            |        | 2.19                        |

|                         | HPGR Vs SAG | HPGR Vs SAG   | Overall Savings         |
|-------------------------|-------------|---------------|-------------------------|
| Power Savings           | 15.38%      | 0.08 \$/t     | \$0.88 Million per year |
| Consumables Savings     | 25.21%      | 0.59 \$/t     | \$6.46 Million per year |
| Total Operating Savings | 23.43%      | 0.67 \$/t     | \$7.34 Million per year |
| Total Capital Savings   | -9.83%      | -\$-9,451,000 | -\$9.45 Million         |

| Data                  |            |
|-----------------------|------------|
| Throughput Rate (t/a) | 10,950,000 |
| Throughput Rate (t/h) | 1,359      |
| Availability SAG (%)  | 92         |
| Availability HPGR (%) | 96         |

| Assumption Power Cost |
|-----------------------|
| CDN\$/kwh             |
| 0.032                 |

### ALL FIGURES SHOWN IN CDN\$

### Details:

| SAG Circuit: Ball Mills: include 2 mill plus general spares                             |    |
|-----------------------------------------------------------------------------------------|----|
| HPGR Unit: include 1 unit plus general spares                                           |    |
| HPGR Circuit – Ball Mills: include 2 mill plus general spares                           |    |
| HPGR Screens: include 2 units plus spares                                               |    |
| HPGR Circuit – Cone Crusher includes 1 units plus general spares                        |    |
| HPGR Circuit - Conveyors, etc. includes conveyors, surge bins and dust collection syste | em |





### 6.0 COMMENTS

Economically, the HPGR circuit option has been determined to be very favourable.

The capital cost increase for the HPGR option has been calculated to be about CDN 10 million compared with that for an equivalently sized SAG mill circuit.

The total operating cost savings due to the introduction of the HPGR versus the SAG option is about CDN 7.34 million per year.

The size of the Morrison Project operation at 10.95 Mt/a throughput rate has resulted in the recommendation that one SAG mill or one HPGR unit be considered for installation in the proposed comminution circuit, each option followed by ball milling. Based on the obtained trade-off study results and HPGR pilot testing, the following objectives were achieved:

- determination of energy requirements
- optimization of the HPGR operating variables
- sizing the HPGR for industrial scale
- determination of wear rate
- determination of HPGR impact on ball mill unit energy consumption.

The power savings offered by HPGR technology, especially for high tonnage applications and even in situations where power is relatively cheap, is one of the primary reasons for this HPGR technology being selected for new projects of this nature. Additional factors include the rapidly developing familiarity and reliability of HPGR technology, the reduced footprint required, reduced associated operating costs, and in some cases, a finer product grind size.



## 7.0 CONCLUSIONS

A trade-off study has been conducted comparing the capital and operating costs of using HPGR technology and the SAG milling option in the communication circuit for the Morrison porphyry copper/gold project. A significant savings in operating costs indicates that it is favourable to use the HPGR option when compared with the more conventional SAG milling option. In addition, the HPGR option can provide increased revenue due to the increased availability and plant capacity.

Based on the results of this evaluation, it is recommended that the HPGR option be used in the detailed engineering stage.



## APPENDIX A

PROCESS DESIGN CRITERIA AND FLOWSHEETS

# WARDROP

### **PROCESS DESIGN CRITERIA - HPGR**

PROJECT: Pacific Booker CLIENT: Morrison Porphyry Copp PROJECT NUMBER: 06527201.00 DATE: 7-Dec-07 REV: D - WORKING COPY

- CODES
  - Client
     Industry / Experience
     Calculation
     Mass Balance
     PRA Met Lab
     SGS Met Lab
  - 7 Beacon Hill Consultants
  - 8 Suppliers9 Others

All values are in metric units.

| DESCRIPTION                               | UNIT             | VALUE                    | SOURCES |
|-------------------------------------------|------------------|--------------------------|---------|
| GENERAL                                   | ·                |                          |         |
| Type Of Deposit                           |                  | Porphyry Copper Gold Ore |         |
| Ore Characteristics                       |                  |                          |         |
| Specific Gravity                          | g/cm³            | 2.7                      | 6       |
| Bulk Density                              | t/m <sup>3</sup> | 1.6                      | 2       |
| Moisture Content                          | %                | 3.0                      | 1       |
| Abrasion Index (Average)                  | g                | 0.320                    | 6       |
| Operating Schedule                        |                  |                          |         |
| Shift/Day                                 |                  | 2                        | 1       |
| Crusher Plant Hours/Shift                 | h                | 8                        | 1       |
| Crusher Plant Hours/Day                   | h                | 16                       | 1       |
| Grinding and Flotation Hours/Shift        | h                | 12                       | 1       |
| Grinding and Flotation Hours/Day          | h                | 24                       | 1       |
| Days/Year                                 | days             | 365                      | 1       |
| Plant Availability/Utilization            |                  |                          |         |
| Overall Plant Feed                        | t/y              | 10,950,000               | 2,1     |
| Overall Plant Feed                        | t/d              | 30,000                   | 1       |
| Crushing Plant Availability               | %                | 75.0                     | 2       |
| HPGR Availability                         | %                | 95.0                     |         |
| Grinding and Flotation Plant Availability | %                | 92.0                     | 2       |
| Crushing Rate                             | t/h              | 2,500.0                  | 3       |
| HPGR Rate                                 |                  | 1,315.8                  |         |
| Grinding Rate                             | t/h              | 1,358.7                  | 3       |
| Flotation Rate                            | t/h              | 1,358.7                  | 3       |
| Head Grades                               | % Cu             | 0.40                     | 6       |
|                                           | % Mo             | 0.006                    | 6       |
|                                           | g/t Au           | 0.19                     | 6       |
|                                           | g/t Ag           | 1.60                     | 6       |
| Recovery:                                 | Cu %             | 84.00                    | 5,6     |
|                                           | Mo %             | 78.00                    | 5,6     |
|                                           | Au %             | 56.00                    | 5,6     |
|                                           | Ag %             | 56.00                    | 5,6     |

| DESCRIPTION                                   | UNIT             | VALUE         | SOURCES |
|-----------------------------------------------|------------------|---------------|---------|
| Cu Concentrate Grade                          | % Cu             | 26.50         | 5,6     |
|                                               | % Mo             | 0.37          | 5.6     |
|                                               | a/t Au           | 9.00          | 5.6     |
|                                               | g/t Ag           | 75.00         | 5,6     |
| Mo Concentrate Grade                          | <u> </u>         | 0.83          | 5.6     |
|                                               | % Mo             | 53 60         | 5.6     |
| Cu Concentrate Mass Recovery                  | %                | 1.27          | 3       |
| Mo Concentrate Mass Recovery                  | %                | 0.009         | 3       |
| Cu Concentrate Production                     | t/y              | 138.838       | 3       |
| Mo Concentrate Production                     | t/v              | 956           | 4       |
| CRUSHING                                      | u y              |               |         |
| Primary Crushing Production Parameters        |                  |               |         |
| Feed Particle Size                            | mm               | 1.500         | 2       |
| Crusher Type                                  | type             | Gyratory      | 2       |
| Number of Crushers                            | 510              | 1             | 3       |
| Crushing Rate                                 | t/h              | 2.500.0       | 4       |
| Product Size, P <sub>80</sub>                 | mm               | 150           | 2       |
| l iner Wear Rate                              | ka/kW·h          | 0.022         | 3       |
| Crushed Ore Stockpile Parameters              |                  |               |         |
| Crushed Ore Stockpile (Live Capacity)         | t                | 30.000        | 2       |
| Crushed Ore Bulk Density                      | t/m <sup>3</sup> | 1.6           | 2       |
| Angle of Repose                               | degrees          | 37            | 2       |
| Angle of Reclaim                              | degrees          | 60            | 2       |
| No of Feeders                                 | ¥                | 3             | 3       |
| Average Tonnage Rate (Each), Operating        | t/h              | 453           | 4       |
| Type of Discharge Feeders                     | type             | Apron         | 2       |
| SECONDARY CRUSHING & SCREENING                | -                |               |         |
| Crusher Type                                  |                  | Cone          |         |
| Number of Crushers                            |                  | 1             |         |
| Operating Shifts/Day                          |                  | 2             |         |
| Operating Hours/Shift                         |                  | 12            |         |
| Secondary Crushing and Screening Availability | %                | 75            |         |
| Processing Rate                               | mtph             | 1,019.0       |         |
| Product Size, P80                             | mm               | 45.0          |         |
| No of Dishcharge Feeders                      |                  | 1             |         |
| Type of Discharge Feeders                     |                  | Conveyor      |         |
| Crushed Ore Bulk Density                      | t/m <sup>3</sup> | 1.6           |         |
| Screen Type                                   | double deck      | Vibratory/Dry |         |
| Number of Screens                             |                  | 2             |         |
| Processing Rate                               |                  | 2,377.7       |         |
| Screen Appertures                             | mm               | 75 and 45     |         |
| TERTIARY CRUSHING                             |                  |               |         |
| Crusher Type                                  |                  | HPGR          |         |
| Number of Units                               |                  | 1             |         |
| Tertiary Crushing Plant Availability          | %                | 95            |         |
| Processing Rate (Fresh Feed)                  | t/h              | 1,315.8       |         |
| Type of Feeders                               |                  | Belt Feeder   |         |

| DESCRIPTION                   | UNIT               | VALUE         | SOURCES |
|-------------------------------|--------------------|---------------|---------|
| Number of Feeders             |                    | 1             |         |
| Specific Energy Consumption   | kWh/t              | 2.0           |         |
| Average Specific Throughput   | ts/hm <sup>3</sup> | 220           |         |
| Feed Size, 80% Passing        | mm                 | 45.0          |         |
| Product Size, 80% Passing     | mm                 | 6.0           |         |
| Screen Type                   | double deck        | Vibratory/Wet |         |
| Number of Screens             |                    | 2             |         |
| Screen Availability           | %                  | 95            |         |
| Processing Rate               |                    | 1,834.2       |         |
| Screen Appertures             | mm                 | 20 and 6      |         |
| GRINDING                      |                    |               |         |
| Mill Type                     |                    | Ball mill     | 2       |
| Number of Mills               |                    | 2             | 3       |
| Processing Rate               | t/h                | 1,358.7       | 4       |
| Bond Ball Mill Work Index     | kWh/t              | 16.1          | 6       |
| Feed Solids                   | %w/w               | 72.0          | 2       |
| Abrasion Index, Ai            |                    | 0.320         | 6       |
| Liner Wear Rate               | kg/kW-h            | 0.008         | 3       |
| Feed Size, P <sub>80</sub>    | mm                 | 6.0           | 6       |
| Product Size, P <sub>80</sub> | μm                 | 150           | 1, 5    |
| Mill Speed                    | % CS               | 72 2          |         |
| Ball Mill Charge              | %                  | 35            |         |
| Recirculation Load            | %                  | 300           | 2       |
| Classification                | type               | Cyclones      |         |









# WARDROP

### **PROCESS DESIGN CRITERIA - SAG**

PROJECT: Pacific Booker CLIENT: Morrison Porphyry Copp PROJECT NUMBER: 06527201.00 DATE: 22-Jun-07 REV: C - WORKING COPY

- CODES
  - Client
     Industry / Experience
  - 3 Calculation
  - 4 Mass Balance
  - 5 PRA Met Lab
  - 6 SGS Met Lab
  - 7 Beacon Hill Consultants
  - 8 Suppliers

9 Others

All values are in metric units.

| DESCRIPTION                               | UNIT              | VALUE                    | SOURCES |
|-------------------------------------------|-------------------|--------------------------|---------|
| GENERAL                                   |                   |                          |         |
| Type Of Deposit                           |                   | Porphyry Copper Gold Ore |         |
| Ore Characteristics                       |                   |                          |         |
| Specific Gravity                          | g/cm <sup>3</sup> | 2.7                      | 6       |
| Bulk Density                              | t/m <sup>3</sup>  | 1.6                      | 2       |
| Moisture Content                          | %                 | 3.0                      | 1       |
| Abrasion Index (Average)                  | g                 | 0.320                    | 6       |
| Operating Schedule                        |                   |                          |         |
| Shift/Day                                 |                   | 2                        | 1       |
| Crusher Plant Hours/Shift                 | h                 | 8                        | 1       |
| Crusher Plant Hours/Day                   | h                 | 16                       | 1       |
| Grinding and Flotation Hours/Shift        | h                 | 12                       | 1       |
| Grinding and Flotation Hours/Day          | h                 | 24                       | 1       |
| Days/Year                                 | days              |                          | 1       |
| Plant Availability/Utilization            |                   |                          |         |
| Overall Plant Feed                        | t/y               | 10,950,000               | 2,1     |
| Overall Plant Feed                        | t/d               | 30,000                   | 1       |
| Crusher Plant Availability                | %                 | 75.0                     | 2       |
| Grinding and Flotation Plant Availability | %                 | 92.0                     | 2       |
| Crushing Rate                             | t/h               | 2,500.0                  | 3       |
| Grinding Rate                             | t/h               | 1,358.7                  | 3       |
| Flotation Rate                            | t/h               | 1,358.7                  | 3       |
| Head Grades                               | % Cu              | 0.40                     | 6       |
|                                           | % Mo              | 0.006                    | 6       |
|                                           | g/t Au            | 0.19                     | 6       |
|                                           | g/t Ag            | 1.60                     | 6       |
| Recovery:                                 | Cu %              | 84.0                     | 5,6     |
|                                           | Mo %              | 78.0                     | 5,6     |
|                                           | Au %              | 56.0                     | 5,6     |
|                                           | Ag %              | 56.0                     | 5,6     |
| Cu Concentrate Grade                      | % Cu              | 26.5                     | 5,6     |
|                                           | % Mo              | 0.37                     | 5,6     |

| DESCRIPTION                            | UNIT             | VALUE       | SOURCES |  |
|----------------------------------------|------------------|-------------|---------|--|
|                                        | g/t Au           | 9.0         | 5.6     |  |
|                                        | a/t Aa           | 75          | 5,6     |  |
| Mo Concentrate Grade                   | % Cu             | 0.8         | 5.6     |  |
|                                        | % Mo             | 53.6        | 5.6     |  |
| Cu Concentrate Mass Recovery           | %                | 1 27        | 3       |  |
| Mo Concentrate Mass Recovery           | <u> </u>         | 0.02        | 3       |  |
| Cu Concentrate Broduction              | 70<br>thr        | 138 838     | 3       |  |
| Ma Concentrate Production              | +6.              | 130,030     | 3       |  |
|                                        | Uy               | 930         | 4       |  |
| Brimary Crushing Braduction Parameters |                  |             |         |  |
| Frimary Crushing Froduction Farameters |                  | 1 500       | 2       |  |
|                                        | 11111            | 1,500       | 2       |  |
|                                        | туре             | Gylatory    | 2       |  |
| Number of Crushers                     | ±//_             | 2,500,0     | 3       |  |
| Crushing Processing Rate               | Un               | 2,500.0     | 4       |  |
|                                        |                  | 150         | 2       |  |
| Liner Wear Rate                        | kg/kvv•n         | 0.022       | 3       |  |
| Crushed Ore Stockpile Parameters       |                  |             |         |  |
| Crushed Ore Stockpile (Live Capacity)  | t                | 30,000      | 2       |  |
| Crushed Ore Bulk Density               | t/m <sup>o</sup> | 1.6         | 2       |  |
| Angle of Repose                        | degrees          | 37          | 2       |  |
| Angle of Reclaim                       | degrees          | 60 2        |         |  |
| No of Feeders                          |                  | 3           | 3       |  |
| Average Tonnage Rate (Each), Operating | t/h              | 453         | 4       |  |
| Type of Discharge Feeders              | type             | Apron       | 2       |  |
| GRINDING                               |                  |             |         |  |
| Production Rate                        | t/h              | 1,358.7     | 4       |  |
| Bond Ball Mill Work Index              | kWh/t            | 17.0        | 6       |  |
| Primary Grinding                       |                  |             |         |  |
| Mill                                   | type             | SAG mill    | 2       |  |
| Number of Mills                        |                  | 1           | 3       |  |
| Feed Solids                            | %w/w             | 72          | 4       |  |
| Bond Abrasion Index, Ai                |                  | 0.320       | 6       |  |
| Balls Wear Rate                        | kg/kW∙h          | 0.125 3     |         |  |
| Liner Wear Rate                        | kg/kW∙h          | 0.011 3     |         |  |
| Feed Size, F <sub>80</sub>             | μm               | 150,000     | 2       |  |
| Product Size, P <sub>80</sub>          | μm               | 4,400 6     |         |  |
| Mill Speed                             | % CS             | 70          | 2       |  |
| Grate Size                             | mm               | 19          | 60      |  |
| Classification                         | type             | Screen      | 2       |  |
| Screen Aperture                        | mm               | 10-19       | 2       |  |
| Screen Oversize Flowrate               | t/h              | 272         | 2       |  |
| SAG Circuit Pebble Crusher             |                  | Pebble/Cone | 2       |  |
| Circulating Load                       | %                | 20          | 2       |  |
| Average Tonnage Rate, Pebble Crusher   | t/h              | 272         | 3       |  |
| Max. Tonnage Rate, Pebble Crusher      | t/h              | 340         | 3       |  |
| Pebble Crusher Discharge, P80          | mm               | 16          | 2       |  |
| Pebble Crusher Discharge, P80          | mm               | 10          | 3       |  |
| Secondary Grinding                     |                  |             |         |  |

| DESCRIPTION                   | UNIT    | VALUE     | SOURCES |
|-------------------------------|---------|-----------|---------|
| Mill                          | type    | Ball mill | 2       |
| Number of Mills               |         | 2         | 3       |
| Feed Solids                   | %w/w    | 72        | 2       |
| Abrasion Index, Ai            |         | 0.320     | 6       |
| Liner Wear Rate               | kg/kW-h | 0.008     | 3       |
| Primary Bond Work Index       | kWh/t   | 17.0      | 3       |
| Feed Size, P <sub>80</sub>    | μm      | 4,400     | 6       |
| Product Size, P <sub>80</sub> | μm      | 150       | 5       |
| Mill Speed                    | % CS    | 72        | 2       |
| Ball Mill Charge              | %       | 35        |         |
| Recirculation Load            | %       | 300       | 2       |
| Classification                | type    | Cyclones  |         |

| DESCRIPTION                         | UNIT              | VALUE      | SOURCES |  |
|-------------------------------------|-------------------|------------|---------|--|
| FLOTATION CIRCUIT                   |                   |            |         |  |
| Copper and Gold Flotation           |                   |            |         |  |
| Conditionina                        |                   |            |         |  |
| Solids Flow Rate                    | t/h               | 1.358.7    | 4       |  |
| Pulp Flow Rate                      | m <sup>3</sup> /h | 3.022.8    | 4       |  |
| Solids/Pulp Density                 | %                 | 35.0       | 4       |  |
| Conditioning Residence Time         | min               | 2.0        | 3       |  |
| Pulp pH                             |                   | 9.8        | 6       |  |
| Rougher/Scavenger Flotation         |                   |            |         |  |
| Solids Flow Bate                    | t/h               | 1.358.7    | 4       |  |
| Pulp Flow Rate                      | m <sup>3</sup> /h | 3.022.8    | 4       |  |
| Solids/Pulp Density                 | %                 | 35.0       | 4       |  |
| Plant Retention Time                | min               | 30.0       | 4       |  |
| Batch Retention Time                | min               | 12.0       | 2       |  |
| Flotation Time Scale-up             |                   | 25         | 6       |  |
|                                     |                   | 9.5        | 6       |  |
| Rougher Concentrate Weight Recovery | %                 | 8.0        | 3       |  |
| Concentrate Regrind Circuit         | ,0                |            | ŭ       |  |
| Throughput                          | t/h               | 147.6      |         |  |
| Mill Type                           | type              | Tower Mill |         |  |
| Number of Mills                     |                   | 2          |         |  |
| Ball Mill Bond Work Index           | kWh/t             | 17.0       |         |  |
| Pulp Density                        | % solids          | 0.0        |         |  |
| Feed Size. P <sub>80</sub>          | μm                | 150.0      |         |  |
| Product Size. P <sub>80</sub>       | μm                | 25.0       |         |  |
| Mill Speed                          | % CS              | 72.0       |         |  |
| Mill Ball Charge                    | %                 | 35.0       |         |  |
| Recirculation Load                  | %                 | 250        |         |  |
| Classification                      |                   | Cvclones   |         |  |
| Cvclone Feed Density                | %                 | 42.4       | 2       |  |
| 1st Cleaner Flotation               |                   |            |         |  |
| Solids/Pulp Density                 | %                 | 24.4       | 4       |  |
| Solids Flow Rate                    | t/h               | 158.9      | 4       |  |
| Pulp Flow Rate                      | m³/h              | 491.2      | 4       |  |
| Plant Retention Time                | min               | 33.6       | 4       |  |
| Residence Time Scale-up             |                   | 2.8        | 2       |  |
| Batch Retention Time                | min               | 12.0       | 6       |  |
| Flotation pH                        |                   | 11.0       | 6       |  |
| 1st Cleaner Scavenger Flotation     |                   |            |         |  |
| Solids/Pulp Density                 | %                 | 23.5       | 4       |  |
| Solids Flow Rate                    | t/h               | 130.0      | 4       |  |
| Pulp Flow Rate                      | m³/h              | 468.9      | 4       |  |
| Plant Retention Time                | min               | 33.6       | 4       |  |
| Residence Time Scale-up             |                   | 2.8        | 2       |  |
| Batch Retention Time                | min               | 12.0       | 6       |  |
| Flotation pH                        |                   | 11.0       | 6       |  |
| 2nd Cleaner Flotation               |                   |            |         |  |

| DESCRIPTION                                   | UNIT              | VALUE     | SOURCES |  |  |
|-----------------------------------------------|-------------------|-----------|---------|--|--|
| Solids/Pulp Density                           | %                 | 25.7      | 4       |  |  |
| Solids Flow Rate                              | t/h               | 28.9      | 4       |  |  |
| Pulp Flow Rate                                | m <sup>3</sup> /h | 92.6      | 4       |  |  |
| Plant Retention Time                          | min               | 16.8      | 4       |  |  |
| Residence Time Scale-up                       |                   | 2.8       | 2       |  |  |
| Batch Retention Time                          | min               | 6.0       | 6       |  |  |
|                                               |                   | 11.5      | 6       |  |  |
| Moly Flotation                                |                   |           | ů       |  |  |
| Thickenening                                  |                   |           |         |  |  |
| Thickener                                     | type              | High Rate |         |  |  |
| Copper-Moly Concentrate Thickener Feed Solids | t/h               | 17.6      | 4       |  |  |
| Thickener U/F Density                         | % solids          | 50.0      | ТВА     |  |  |
| Thickener Diameter                            | m                 | 11.4      | 3       |  |  |
| Thickener Unit Area-required                  | t/m²/h            | 0.20      | ТВА     |  |  |
| Slurry Storage Tank Capacity                  | h                 | 12        |         |  |  |
| Moly Rougher Flotation                        |                   |           |         |  |  |
| Solids/Pulp Density                           | %                 | 38.3      | 4       |  |  |
| Solids Flow Rate                              | t/h               | 24.0      | 4       |  |  |
| Pulp Flow Rate                                | m <sup>3</sup> /h | 45.1      | 4       |  |  |
| Plant Retention Time                          | min               |           |         |  |  |
| Residence Time Scale-up                       |                   |           |         |  |  |
| Batch Retention Time                          | min               |           |         |  |  |
| Flotation pH                                  |                   |           |         |  |  |
| Moly Cleaner Flotation                        |                   |           |         |  |  |
| Solids/Pulp Density                           | %                 | 25.5      | 4       |  |  |
| Solids Flow Rate                              | t/h               | 6.8       | 4       |  |  |
| Pulp Flow Rate                                | m <sup>3</sup> /h | 21.5      | 4       |  |  |
| Plant Retention Time                          | min               |           |         |  |  |
| Residence Time Scale-up                       |                   |           |         |  |  |
| Batch Retention Time                          | min               |           |         |  |  |
| Flotation pH                                  |                   |           |         |  |  |
| CONCENTRATE DEWATERING                        |                   |           |         |  |  |
| Copper Concentrate                            |                   |           |         |  |  |
| Thickening                                    |                   |           |         |  |  |
| Thickener                                     | type              | High Rate |         |  |  |
| Copper Concentrate Thickener Feed Solids      | t/h               | 17.2      | 4       |  |  |
| Thickener U/F Density                         | % solids          | 60.0      | 4       |  |  |
| Thickener Diameter                            | m                 | 11.3      | 3       |  |  |
| Thickener Unit Area-required                  | t/m²/h            | 0.20      | ТВА     |  |  |
| Slurry Storage Tank Capacity                  | h                 | 12        |         |  |  |
| Filtration                                    |                   |           |         |  |  |
| Filter                                        | type              | Pressure  |         |  |  |
| Solids Feed Rate                              | t/h               | 21.5      | 4       |  |  |
| Slurry Feed Flowrate                          | m³/h              | 18.1      | 4       |  |  |
| Filter Rate                                   | t/(h⋅m²)          | 0.3       | ТВА     |  |  |
| Filter Unit Area Required                     | kg/m²/h           |           | TBA     |  |  |
| Filter Operating Time                         | %                 | 85        |         |  |  |

| DESCRIPTION                                        | UNIT              | VALUE     | SOURCES |  |  |
|----------------------------------------------------|-------------------|-----------|---------|--|--|
| Filter Area                                        | m²                | 84.4      | 3       |  |  |
| Filter Cake Moisture                               | %                 | 8         | 4       |  |  |
| Filtered Copper Concentrate Storage Capacity       | t                 | 2,067     | 3       |  |  |
| Filtered Copper Concentrate Storage Capacity       | m <sup>3</sup>    | 984       | 3       |  |  |
| Moly Concentrate                                   |                   |           |         |  |  |
| Thickening                                         |                   |           |         |  |  |
| Thickener                                          | type              | High Rate |         |  |  |
| Moly Concentrate Thickener Feed Solids<br>Flowrate | t/h               | 0.33      | 4       |  |  |
| Thickener U/F Density                              | % solids          | 60.0      | 4       |  |  |
| Thickener Diameter                                 | m                 | 1.6       | 3       |  |  |
| Thickener Unit Area-required                       | t/m²/h            | 0.20      | ТВА     |  |  |
| Slurry Storage Tank Capacity                       | h                 | 12        |         |  |  |
| Filtration                                         |                   |           |         |  |  |
| Filter                                             | type              |           |         |  |  |
| Solids Feed Rate                                   | t/h               | 0.41      | 4       |  |  |
| Slurry Feed Flowrate                               | m <sup>3</sup> /h | 1.22      | 4       |  |  |
| Filter Rate                                        | t/(h·m²)          | 0.3       | ТВА     |  |  |
| Filter Unit Area Required                          | kg/m²/h           |           | ТВА     |  |  |
| Filter Operating Time                              | %                 | 85        |         |  |  |
| Filter Area                                        | m <sup>2</sup>    | 1.6       | 3       |  |  |
| Filter Cake Moisture                               | %                 | 20        | 4       |  |  |
| Filtered Copper Concentrate Storage Capacity       | t                 | 39        | 3       |  |  |
| Filtered Copper Concentrate Storage Capacity       |                   | 19        | 3       |  |  |
| Dryer                                              |                   |           |         |  |  |
| Dryer                                              | type              |           |         |  |  |
| Solids Feed Rate                                   | t/h               | 0.41      | 4       |  |  |
| Concentrate Feed Moisture                          | %                 | 20        | 4       |  |  |
| Concentrate Product Moisture                       | %                 | 5         | 4       |  |  |
| REAGENTS                                           |                   |           |         |  |  |
| Lime (Hydrated)                                    | g/t               | 450       | 6       |  |  |
| Potasium Ethyl Xanthate (PEX)                      | g/t               | 90        | 6       |  |  |
| Cytec Aero 3302                                    | g/t               | 20        | 6       |  |  |
| MIBC                                               | g/t               | 55        | 6       |  |  |
| Carboxyl Methyl Cellulose (CMC)                    | g/t               | 10        |         |  |  |
| Flocculant                                         | g/t               | 10        |         |  |  |









## APPENDIX B

LAYOUTS



U:\N-S\PACIFIC BOOKER MINERALS INC - 5272\06527201.00 - MORRISON PORPHYRY COPPER GOLD PROJECT\10-LAYOUT\DWG\E0100010PT.DWG







|      |    |                              |           |                 |                    |                  |          |             |      | SECTIO    | N: LAY             | (OUT  |         | <b>"</b>   |                  | TITLE MORRISON PORPHYRY COPPER GOLD                                                       |
|------|----|------------------------------|-----------|-----------------|--------------------|------------------|----------|-------------|------|-----------|--------------------|-------|---------|------------|------------------|-------------------------------------------------------------------------------------------|
|      |    |                              |           |                 |                    |                  |          |             |      | SCALE     | 1:2                | 250   | DATE    | <b>PDM</b> | PACIFIC BOOKER   | MILL BUILDING                                                                             |
|      |    |                              |           |                 |                    |                  |          |             |      | DESIGN    | . BY: J            | .DIAZ | 13DEC07 |            |                  | GENERAL ARRANGEMENT                                                                       |
|      |    |                              | <u>رم</u> |                 | <u></u> и          |                  | _        |             |      | DRAWN     | BY:                | AR    | 13DEC07 |            |                  | SAG MILL OPTION                                                                           |
| DATE | BY | CLIENT<br>PRO.MAN<br>PRO.ENC | PROCES    | PIPING<br>MECH. | STRUCT.<br>SERVICE | V. ISS<br>o.  No | JE<br>9. | DESCRIPTION | DATE | BY APP. I | ВТ:<br>3 <b>Y:</b> |       |         | WKDKOH     | Engineering Inc. | FILENAME: PROJECT NUMBER DRAWING NUMBER REV.<br>E010001opt.DWG 06527201.00 E0-10-0010pt - |







u:\n-s\Profic Booker Imperils Inc - 5272\08527201.00 - Indrikson Porphyry Copper GOLD Project\10-lindut\Disc\ed10004.0



## APPENDIX C

OPERATING COSTS

| Client:                                   | Pacific Booker Minerals Inc      |      |  |  |  |  |  |
|-------------------------------------------|----------------------------------|------|--|--|--|--|--|
| Project Name:<br>Project Number:<br>Date: | Morrison<br>6527201<br>17-Oct-07 |      |  |  |  |  |  |
|                                           |                                  | HPGR |  |  |  |  |  |
| Daily tonnes milled                       | 30,000                           |      |  |  |  |  |  |
| Mill Availability                         | 96%                              |      |  |  |  |  |  |
| Annual operating days                     | 365                              |      |  |  |  |  |  |

Annual Throughput 10,950,000 t/y

#### COMMINUTION CIRCUIT OPERATING COST SUMMARY

| DESCRIPTION          | LABOUR | ANNUAL COST<br>(\$) | (UNIT COST CDN\$<br>/tonne ore) |
|----------------------|--------|---------------------|---------------------------------|
| LABOUR               |        |                     |                                 |
| OPERATING LABOUR     | 16     | \$1,142,396         | 0.104                           |
| MAINTENANCE LABOUR   | 23     | \$1,617,342         | 0.148                           |
| SUB-TOTAL STAFF      | 39     | \$2,759,738         | 0.252                           |
| SUPPLIES             |        |                     |                                 |
| OPERATING SUPPLIES   |        | \$15,950,276        | 1.457                           |
| MAINTENANCE SUPPLIES |        | \$450,000           | 0.041                           |
| POWER SUPPLY         |        | \$4,819,710         | 0.440                           |
| SUB-TOTAL SUPPLIES   |        | \$21,219,986        | 1.938                           |
|                      |        |                     |                                 |
| TOTAL                | 39     | \$23,979,725        | 2.190                           |

| Client:<br>Project Name:<br>Project Number: | Pacific Booker Minerals Inc<br>Morrison<br>6527201 |  |  |
|---------------------------------------------|----------------------------------------------------|--|--|
| Date:                                       | 17-Oct-07                                          |  |  |
| Daily tonnes milled                         | 30,000                                             |  |  |
| Mill Availability                           | 96%                                                |  |  |
| Annual operating days                       | 365                                                |  |  |
| Annual Throughput                           | 10,950,000 t/y                                     |  |  |

### MILL LABOUR

| DESCRIPTION                     | Labour | Base Salary | Loaded Salary | Annual Cost |
|---------------------------------|--------|-------------|---------------|-------------|
|                                 |        | CDN\$       | CDN\$         | CDN\$       |
|                                 |        |             |               |             |
| OPERATIONS                      |        |             |               |             |
| Primary Crusher Operators       | 2      | \$54,750    | \$71,723      | \$143,445   |
| Cone Crusher and HPGR Operators | 2      | \$54,750    | \$71,723      | \$143,445   |
| Control Room Operators          | 4      | \$60,225    | \$78,895      | \$315,579   |
| Grinding Operators              | 3      | \$58,692    | \$76,887      | \$230,660   |
| General Labourers               | 5      | \$47,216    | \$61,853      | \$309,267   |
| SUB-TOTAL OPERATIONS            | 16     |             |               | \$1,142,396 |
|                                 |        |             |               |             |
| SUB-TOTAL OPERATIONS            | 16     |             |               | \$1,142,396 |

| Client:               | Pacific Booker Minerals Inc |  |  |
|-----------------------|-----------------------------|--|--|
| Project Name:         | Morrison                    |  |  |
| Project Number:       | 6527201                     |  |  |
| Date:                 | 17-Oct-07                   |  |  |
|                       | HPGR                        |  |  |
| Daily tonnes milled   | 30,000                      |  |  |
| Mill Availability     | 96%                         |  |  |
| Annual operating days | 365                         |  |  |
| Annual Throughput     | 10,950,000 t/y              |  |  |

### MILL MAINTENANCE LABOUR

| DESCRIPTION                | Labour | Base Salary | Loaded Salary | Annual Cost |
|----------------------------|--------|-------------|---------------|-------------|
|                            |        |             |               |             |
|                            |        |             |               |             |
| PLANT MAINTENANCE          |        |             |               |             |
| Mechanics and Electricians | 12     | \$56,612    | \$74,161      | \$889,933   |
| Apprentices                | 9      | \$48,728    | \$63,833      | \$574,497   |
| Instrument Technicians     | 2      | \$58,364    | \$76,456      | \$152,912   |
|                            |        |             |               |             |
| TOTAL MILL MAINTENANCE     | 23     |             |               | \$1,617,342 |

12/21/2007

Client: Project Name: Project Number: Date: Pacific Booker Minerals Inc Morrison 6527201 17-Oct-07

Daily tonnes milled Mill Availability Annual operating days HPGR 30,000 96% 365

Annual Throughput

10,950,000 t/y

#### POWER SUPPLY

| Plant Power | kw     | 17,910 |
|-------------|--------|--------|
| Power Price | \$/kwh | 0.032  |

| SUPPLIES           | КМН         | Unit Cost<br>(\$/kwh) | Total Cost<br>(\$/year) | Unit Cost<br>(\$/t ore) |
|--------------------|-------------|-----------------------|-------------------------|-------------------------|
| PLANT              | 150,615,936 | 0.032                 | \$4,819,710             | \$0.44                  |
| TOTAL POWER SUPPLY | 150,615,936 | 0.032                 | \$4,819,710             | \$0.44                  |

#### MAINTENANCE SUPPLIES

| AREA                            |           | Total Cost<br>(\$/year) | Unit Cost<br>(\$/t ore) |
|---------------------------------|-----------|-------------------------|-------------------------|
| Crushing                        | allowance | \$200,000               | 0.0183                  |
| Grinding                        | allowance | \$100,000               | 0.0091                  |
| Miscellaneous Mill Supplies     | allowance | \$75,000                | 0.0068                  |
| Misc. Building Complex Supplies | allowance | \$75,000                | 0.0068                  |
| TOTAL MTCE. SUPPLIES            |           | \$450,000               | \$0.041                 |

#### PLANT OPERATING SUPPLIES

|                              | Consumption |             | Unit Cost |           | Unit Cost | Total Cost   | Unit Cost  |
|------------------------------|-------------|-------------|-----------|-----------|-----------|--------------|------------|
| SUPPLIES                     | (kg/t ore)  | Source      | (\$/kg)   | Source    | FOB point | (\$/year)    | (\$/t ore) |
| Gyratory Crusher Liners      | 0.005       | Calculation | 3.99      | Suppliers | minesite  | \$232,684    | \$0.021    |
| Cone Crusher Liners          | 0.004       | Calculation | 5.80      | Suppliers | minesite  | \$236,935    | \$0.022    |
| HPGR Rolls                   | 0.071       | Supplier    | 3.04      | Suppliers | minesite  | \$2,363,448  | \$0.216    |
| Ball Mill Balls, 3 in.       | 1.034       | Calculation | 0.97      | Suppliers | minesite  | \$10,982,862 | \$1.003    |
| Ball Mill Liners             | 0.080       | Calculation | 2.40      | Suppliers | minesite  | \$2,092,348  | \$0.191    |
| Mill Light Vehicle Operation | allowance   | Industry    |           |           |           | \$24,000     | \$0.002    |
| Miscellaneous                | allowance   | Industry    |           |           |           | \$18,000     | \$0.002    |
| TOTAL OPERATING SUPPLIES     |             |             |           |           |           | \$15,950,276 | \$1.457    |

| Client:<br>Project Name:<br>Project Number: | Pacific Booker Minerals Inc<br>Morrison<br>6527201 |     |  |
|---------------------------------------------|----------------------------------------------------|-----|--|
| Date:                                       | 17-Oct-07                                          |     |  |
|                                             |                                                    | SAG |  |
| Daily tonnes milled                         | 30,000                                             |     |  |
| Mill Availability                           | 92%                                                |     |  |
| Annual operating days                       | 365                                                |     |  |
| Annual Throughput                           | 10,950,000                                         | t/y |  |

#### COMMINUTION CIRCUIT OPERATING COST SUMMARY

| DESCRIPTION          | LABOUR | ANNUAL COST<br>(\$) | (UNIT COST CDN\$<br>/tonne ore) |
|----------------------|--------|---------------------|---------------------------------|
| LABOUR               |        |                     |                                 |
| OPERATING LABOUR     | 15     | \$1,067,625         | 0.098                           |
| MAINTENANCE LABOUR   | 22     | \$1,553,509         | 0.142                           |
| SUB-TOTAL STAFF      | 37     | \$2,621,134         | 0.239                           |
| SUPPLIES             |        |                     |                                 |
| OPERATING SUPPLIES   |        | \$22,498,491        | 2.055                           |
| MAINTENANCE SUPPLIES |        | \$500,000           | 0.046                           |
| POWER SUPPLY         |        | \$5,734,282         | 0.524                           |
| SUB-TOTAL SUPPLIES   |        | \$28,732,773        | 2.624                           |
|                      |        |                     |                                 |
| TOTAL                | 37     | \$31,353,907        | 2.863                           |

| Client:<br>Project Name:<br>Project Number:<br>Date: | Pacific Booke<br>Morrison<br>6527201<br>17-Oct-07 | r Minerals Inc |
|------------------------------------------------------|---------------------------------------------------|----------------|
|                                                      |                                                   | SAG            |
| Daily tonnes milled                                  | 30,000                                            |                |
| Mill Availability                                    | 92%                                               |                |
| Annual operating days                                | 365                                               |                |
| Annual Throughput                                    | 10,950,000                                        | t/y            |

### MILL LABOUR

| DESCRIPTION            | Labour | Base Salary | Loaded Salary | Annual Cost |
|------------------------|--------|-------------|---------------|-------------|
|                        |        | CDN\$       | CDN\$         | CDN\$       |
|                        |        |             |               |             |
| OPERATIONS             |        |             |               |             |
| Crusher Operators      | 2      | \$54,750    | \$71,175.00   | \$142,350   |
| Control Room Operators | 4      | \$60,225    | \$78,292.50   | \$313,170   |
| Grinding Operators     | 4      | \$58,692    | \$76,299.60   | \$305,198   |
| General Labourers      | 5      | \$47,216    | \$61,381.32   | \$306,907   |
| SUB-TOTAL OPERATIONS   | 15     |             |               | \$1,067,625 |
|                        |        |             |               |             |
| TOTAL MILL LABOUR      | 15     |             |               | \$1,067,625 |

| Client:<br>Project Name:<br>Project Number:<br>Date: | Pacific Booker Minerals Inc<br>Morrison<br>6527201<br>17-Oct-07 |     |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------|-----|--|--|--|
|                                                      |                                                                 | SAG |  |  |  |
| Daily tonnes milled                                  | 30,000                                                          |     |  |  |  |
| Mill Availability                                    | 92%                                                             |     |  |  |  |
| Annual operating days                                | 365                                                             |     |  |  |  |
| Annual Throughput                                    | 10,950,000                                                      | t/y |  |  |  |

### MILL MAINTENANCE LABOUR

| DESCRIPTION                | Labour | Base Salary | Loaded Salary | Annual Cost |
|----------------------------|--------|-------------|---------------|-------------|
|                            |        |             |               |             |
|                            |        |             |               |             |
| PLANT MAINTENANCE          |        |             |               |             |
| Mechanics and Electricians | 12     | \$56,612    | \$74,161      | \$889,933   |
| Apprentices                | 8      | \$48,728    | \$63,833      | \$510,664   |
| Instrument Technicians     | 2      | \$58,364    | \$76,456      | \$152,912   |
|                            |        |             |               |             |
| TOTAL MILL MAINTENANCE     | 22     |             |               | \$1,553,509 |

12/21/2007

Client: Project Name: Project Number: Date:

**Pacific Booker Minerals Inc** Morrison 6527201 17-Oct-07 SAG

Daily tonnes milled Annual operating days

Annual Throughput

Mill Availability

10,950,000 t/y

30,000

92%

365

#### POWER SUPPLY

| Plant Power | kw     | 22,235 |
|-------------|--------|--------|
| Power Price | \$/kwh | 0.032  |

| SUPPLIES           | кwн         | Unit Cost<br>(\$/kwh) | Total Cost<br>(\$/year) | Unit Cost<br>(\$/t ore) |
|--------------------|-------------|-----------------------|-------------------------|-------------------------|
| PLANT              | 179,196,312 | 0.032                 | \$5,734,282             | \$0.52                  |
| TOTAL POWER SUPPLY | 179,196,312 | 0.032                 | \$5,734,282             | \$0.52                  |

#### MAINTENANCE SUPPLIES

| AREA                            |           | Total Cost<br>(\$/year) | Unit Cost<br>(\$/t ore) |
|---------------------------------|-----------|-------------------------|-------------------------|
| Crushing                        | allowance | \$100,000               | 0.0091                  |
| Grinding                        | allowance | \$250,000               | 0.0228                  |
| Miscellaneous Mill Supplies     | allowance | \$75,000                | 0.0068                  |
| Misc. Building Complex Supplies | allowance | \$75,000                | 0.0068                  |
| TOTAL MTCE. SUPPLIES            |           | \$500,000               | 0.046                   |

#### PLANT OPERATING SUPPLIES

|                              | Consumption |             | Unit Cost |           | Unit Cost | Total Cost   | Unit Cost  |
|------------------------------|-------------|-------------|-----------|-----------|-----------|--------------|------------|
| SUPPLIES                     | (kg/t ore)  | Source      | (\$/kg)   | Source    | FOB point | (\$/year)    | (\$/t ore) |
| Gyratory Crusher Liners      | 0.005       | Calculation | 3.99      | Suppliers | minesite  | \$232,684    | \$0.021    |
| Cone Crusher Liners          | 0.004       | Calculation | 5.80      | Suppliers | minesite  | \$236,935    | \$0.022    |
| SAG Mill Balls, 5 in.        | 0.644       | Calculation | 1.04      | Suppliers | minesite  | \$7,330,952  | \$0.669    |
| Ball Mill Balls, 3 in.       | 1.034       | Calculation | 0.97      | Suppliers | minesite  | \$10,982,862 | \$1.003    |
| SAG Mill Liners              | 0.057       | Calculation | 2.52      | Suppliers | minesite  | \$1,580,710  | \$0.144    |
| Ball Mill Liners             | 0.080       | Calculation | 2.40      | Suppliers | minesite  | \$2,092,348  | \$0.191    |
| Mill Light Vehicle Operation | allowance   | Industry    |           |           |           | \$24,000     | \$0.002    |
| Miscellaneous                | allowance   | Industry    |           |           |           | \$18,000     | \$0.002    |
| TOTAL OPERATING SUPPLIES     |             |             |           |           |           | \$22,498,491 | \$2.055    |



## APPENDIX D

CAPITAL COSTS

| Pacific Booker Minerals Inc. |                                                                     | Expressed in Canadian Dollars |      |                             |    |            |     |                 |
|------------------------------|---------------------------------------------------------------------|-------------------------------|------|-----------------------------|----|------------|-----|-----------------|
| Morrison                     | Porphyry Copper Gold Project                                        | 30,000 tpd capacity Loca      |      | Location - British Columbia |    |            |     |                 |
|                              | WARDROP                                                             | Project # 06527201.00         |      |                             |    |            |     |                 |
|                              | Engineering Inc                                                     | COMMINUTION CIRCUIT CAR       | PIT/ | AL COST COMPARISION         | 1  |            |     |                 |
| Area                         | Area Area, Item Description                                         |                               |      | HPGR                        |    | SAG Mill   |     | Variance        |
| Code                         | & Equipment Number                                                  |                               |      | Option                      |    | Option     |     | HPGR - SAG Mill |
| C/D/E                        | COMMINUTION- DIRECT COST SUMMARY                                    |                               |      |                             |    |            |     |                 |
| CO/DO                        | RECLAIM CONVEYOR                                                    |                               |      | \$ 986,655                  | \$ | 592,462    | \$  | 394,193         |
| D1 + D2                      | SECONDARY/TERTIARY CRUSHING EQUIPMENT                               |                               |      | ¢ 22 977 216                | ¢  |            | ¢   | 22 977 216      |
| D1+ D2                       | COMPRISES OF:                                                       |                               |      | \$ 23,077,310               | φ  |            | φ   | 23,077,310      |
|                              | Primary and Secodnary, Transfer Conveyors, Steel chutes<br>and bins |                               |      |                             |    |            |     |                 |
| D1-0                         | SECONDARY/TERTIARY CRUSHING BUILDING                                |                               |      | \$ 6,532,337                | \$ | -          | \$  | 6,532,337       |
| E1                           | GRINDING EQUIPMENT COMPRISES OF:                                    |                               |      |                             |    |            | -\$ | 23,629,629      |
|                              | HPGR OPTION: 2 Ball Mills, Pumps, Cyclopacks                        |                               |      | \$ 23,225,127               |    |            |     |                 |
|                              | SAG OPTION: SAG Mill, 2 Ball Mills, Pumps, Cyclopac                 |                               |      |                             | \$ | 46,854,756 |     |                 |
| EO                           | GIRNDING BUILDING                                                   |                               |      | \$ 14,221,022               | \$ | 14,788,707 | -\$ | 567,686         |
| Total                        | Sub Total- ComminutionDirect Costs                                  |                               |      | \$ 68,842,457               | \$ | 62,235,925 | \$  | 6,606,532       |
|                              | _                                                                   |                               |      |                             |    |            |     |                 |
| C/D/E                        | COMMINUTION- INDIRECT COSTS                                         |                               |      |                             |    |            |     |                 |
|                              | ENGINEERING                                                         | 8%                            |      | \$ 5,507,397                | \$ | 4,978,874  | \$  | 528,523         |
|                              | CONSTRUCTION MANAGEMENT                                             | 8%                            |      | \$ 5,507,397                | \$ | 4,978,874  | \$  | 528,523         |
|                              | FREIGHT **                                                          | 8%                            |      | \$ 4,631,893                | \$ | 4,316,056  | \$  | 315,836         |
|                              | INDIRECTS                                                           | 6%                            |      | \$ 4,130,547                | \$ | 3,734,155  | \$  | 396,392         |
|                              | FIRST FILL OF MEDIA                                                 |                               |      | \$ 1,026,000                | \$ | 1,140,000  | -\$ | 114,000         |
|                              | SPARES                                                              | 3%                            |      | \$ 1,153,408                | \$ | 1,196,792  | -\$ | 43,385          |
| Total                        | Sub Total- Comminution Indirect Costs                               |                               |      | \$ 21,956,641               | \$ | 20,344,752 | \$  | 1,611,889       |
|                              |                                                                     |                               |      |                             |    |            |     |                 |
| -                            | SUB TOTAL - DIRECT + INDIRECT COSTS                                 |                               |      | \$ 90,799,097               | \$ | 82,580,677 | \$  | 8,218,420       |
| -                            | CONTINGENCY @ 15%                                                   |                               |      | \$ 13,619,865               | \$ | 12,387,102 | \$  | 1,232,763       |
| Total                        | TOTAL - COSTS                                                       |                               |      | \$ 104,418,962              | \$ | 94,967,779 | \$  | 9,451,183       |

Note:

Excluding HPGR and Grinding Mills freight which are included in the equipment cost

\*\*

Pacific Booker- HPGR Trade of Estimate Rev2.xls



## APPENDIX E

HIGH-PRESSURE GRINDING TESTS ON COPPER/GOLD/MOLYBDENUM ORE FROM THE MORRISON PROJECT





December 06, 2007

### **High-Pressure Grinding Tests**

on

### Copper/Gold/Molybdenum Ore

from the

## **Morrison Project**

## British Columbia, Canada

## for Pacific Booker Minerals Inc.

at the

## **Polysius Research Centre**

Project No. 2337 2844 / 2220-7959 WE no. 11815

By: Rene Klymowsky/Holger Plath

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 1 / 20

Polysius AG Graf-Galen-Straße 17, D-59269 Beckum-Neubeckum, Germany Phone: +49-(0)2525-99-0 Telefax: +49-(0)2525-99-2100, Telex: 89481-0 PBK D E-Mail: Polysius@tkt-pol.thyssenkrupp.com Internet: www.Polysius.com



Chairman of Supervisory Board: Prof. Dr.-Ing. Heinrich Igelbüscher Executive Board: Jürgen Bauer, Chairman Dr. Friedrich-Wilhelm Dierkes, Dr.-Ing. Detlev Kupper, Trade Register: Amtsgericht Beckum HRB-Nr. 1145 Registered Office: Beckum-Neubeckum

Certified to ISO 9001





### **Table of Contents**

| 1.  | Introduction                                                        |  |  |  |  |
|-----|---------------------------------------------------------------------|--|--|--|--|
| 2.  | Summary                                                             |  |  |  |  |
| 3.  | Definition of terms used in testing of High Pressure Grinding Rolls |  |  |  |  |
| 3.1 | Specific throughput rate                                            |  |  |  |  |
| 3.2 | Specific grinding force                                             |  |  |  |  |
| 3.3 | Specific energy consumption                                         |  |  |  |  |
| 3.4 | Power requirements                                                  |  |  |  |  |
| 3.5 | Specific Power                                                      |  |  |  |  |
| 4.  | Description of test facilities                                      |  |  |  |  |
| 4.1 | ATWAL: Abrasion Testing High-pressure Grinding Roll                 |  |  |  |  |
| 4.2 | REGRO: Semi-industrial High Pressure Grinding Roll                  |  |  |  |  |
| 5.  | Program and results                                                 |  |  |  |  |
| 5.1 | Test program                                                        |  |  |  |  |
| 5.2 | ATWAL abrasion tests                                                |  |  |  |  |
| 5.3 | Semi-industrial REGRO tests                                         |  |  |  |  |
| 5.4 | Influence of operating conditions                                   |  |  |  |  |
| 6.  | Grinding Tests                                                      |  |  |  |  |
| 6.1 | Standard Bond Tests                                                 |  |  |  |  |
| 6.2 | POLYSIUS LABMILL Grinding Tests                                     |  |  |  |  |
| 7.  | Conclusions                                                         |  |  |  |  |





### 1. Introduction

Pacific Booker Minerals Inc., consulted by Wardrop Engineering, initiated a test program at Polysius AG in Germany to investigate the application of High Pressure Grinding Rolls (HPGR's) at their copper/gold/molybdenum porphyry project in the Morrison Lake area, Northern BC.

Ore samples were received in two shipments, 4 drums each, containing a gross weight of 1720 kg. The samples consisted entirely of drill core, which was crushed to < 1¼" for testing. The tests were carried out in a semi-industrial HPGR at three different pressure levels. Closed-circuit tests were simulated using a 6 mm screen. Standard Bond and POLYSIUS laboratory mill (LABMILL) grinding tests were done on the material before and after pressing to determine the extent of weakening of the material. Furthermore, abrasion tests were carried out at different moisture contents to determine the wear life of the rolls.

Earlier testwork carried out on drill core at SGS Lakefield indicated Bond Work Indices ranging from 11-23.5 kWh/t, with an average value of 16.4 kWh/t.



Shipment - 2 of 8 drums - 1620 kg net



Drill Core Samples

### 2. Summary

The feed and product size distributions from open circuit runs in the HPHR on the ore are shown in Figure 1. Increasing pressure had very little effect on the product particle size distributions. Also, moisture content variation had little effect on product PSD's. The main effect of these variables was on the throughput and specific energy consumption. These effects are examined in more detail in the report.

Results from closed-circuit tests with a 6 mm screen are shown in Figure 2. The actual cut size was about 5 mm. The screening was conducted dry, and was quite efficient, resulting in > 90% recovery of the amount of < 5 mm in the HPGR product. The P80 size was about 2.8 mm. It is expected that wet screening would yield very similar results.

The material was of low to medium abrasiveness, with an ATWAL wear index (ATWI) of 9-15 g/t. Wear life for the rolls was estimated at 7000 hours. Bond WI was 17.8 kWh/t before, and 16.1 kWh/t after HPGR, a reduction of 10% in ore hardness.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 3 / 20







Figure 1. Results of a single pass through the HPGR.



Figure 2. Results of closed-circuit testing in the HPGR.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 4 / 20





### 3. Definition of terms used in testing of High-pressure Grinding Rolls

The key parameters derived from the results of testing in a HPGR are:

- the specific throughput rate
- the specific press force which should be applied to obtain a certain comminution effect
- the specific energy consumption
- the power required for a given throughput and size of rolls.

### 3.1 Specific Throughput Rate m

The **specific throughput rate m** is defined as the throughput of a given size of machine divided by the projected area and circumferential speed of the rolls:

| m | = | M/(D * L * u | ) [ts/hm³]                     |
|---|---|--------------|--------------------------------|
| М |   | [tph] :      | throughput rate                |
| D |   | [m] :        | diameter of rolls              |
| L |   | [m] :        | width of rolls                 |
| u |   | [m/s] :      | circumferential speed of rolls |
|   |   |              |                                |

<u>Note</u>: The **specific throughput rate**  $\dot{\mathbf{m}}$  has units of ts/hm<sup>3</sup>, corresponding to the throughput of a HPGR with rolls 1 m in diameter x 1 m wide operating at a roll speed of 1 m/s.

The **specific throughput rate** mainly depends on the <u>properties of the material</u> (e.g., hardness, the physical density of the material, the particle-size distribution of the feed, and the moisture content); the <u>grinding pressure</u>, and the <u>type of roll surface</u> employed.

However, the **specific throughput rate** depends only to a limited extent on the diameter and speed of the rolls and is therefore useful for scaling-up from a test unit to a full size industrial unit. HPGRs (and vertical roller mills) are unique among comminution devices in having a specific capacity term which can be assigned to the material and operating conditions.

#### 3.2 Specific Press Force

The **specific press or grinding force** is defined as the total hydraulic force exerted on the rolls divided by the projected area of the rolls in units of N/mm<sup>2</sup> :

| F(sp) | = | F/(1000 * L * | D) | [N/mm²]                 |
|-------|---|---------------|----|-------------------------|
| F(sp) |   | [N/mm²]       | :  | specific grinding force |
| F     |   | [kN]          | :  | grinding force          |
| L     |   | [m]           | :  | width of rolls          |
| D     |   | [m]           | :  | diameter of rolls       |

This form is useful for comparing pressures on different sizes of HPGR units.

Note: The maximum grinding pressure in the gap between the rolls will be between 40 and 60 times the applied **specific grinding force**, depending on the nip angle. For mineral applications it is sufficient to define the **specific grinding force**.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 5 / 20





#### 3.3 Specific Energy Consumption

The **specific energy consumption**  $W_{(sp)}$  is the energy input which is absorbed per ton of material. It is proportional to the applied <u>specific grinding force</u>.

| W <sub>(sp)</sub>               | ~ c (F(s                                                       | sp), <b>m) * (</b> | F(sp) / m) [kWh/t]                                                           |
|---------------------------------|----------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|
| W <sub>(sp)</sub><br>F(sp)<br>m | [kWh/t]<br>[N/mm <sup>2</sup> ]<br>[(t*s)/(m <sup>3</sup> *h)] | :<br>:<br>:        | specific energy input<br>specific grinding force<br>specific throughput rate |
| <b>c (F</b> (sp)                | ,m <sup>•</sup> )                                              | :                  | factor (function of $F(sp)$ and $m$ )                                        |

The proportionality is usually linear.

#### 3.4 Power requirements.

The net power required for a given size of rolls is the product of the specific energy input  $W_{(sp)}$  and the throughput rate M :

| Ρ                      | = | W <sub>(sp)</sub> * | М | [kW]                                |
|------------------------|---|---------------------|---|-------------------------------------|
| P<br>W <sub>(sp)</sub> |   | [kW]<br>[kWh/t]     | : | power draw<br>specific energy input |
| M                      |   | [tph]               | : | throughput rate                     |

The minimum motor power required is determined by multiplying the net power by a factor of 1.15 to account for any unevenness in the power draw of each roll. Final motor power is determined by the maximum power that can be transmitted by the gear boxes fitted to a given size of machine.

#### 3.5 Specific Power

The net power required for a given size of rolls may also be derived from the specific power function.

The **specific power**  $P_{SP}$  is defined as the power used by a given size of machine divided by the projected area and circumferential speed of the rolls:

| $P_{SP}$ | = | P/(D * L * | u) | [ts/hm <sup>3</sup> ]          |
|----------|---|------------|----|--------------------------------|
| Р        |   | [kW]       | :  | power draw                     |
| D        |   | [m]        | :  | diameter of rolls              |
| L        |   | [m]        | :  | width of rolls                 |
| u        |   | [m/s]      | :  | circumferential speed of rolls |

The specific power varies linearly with the specific press force applied, and may be used to determine whether sufficient power has been provided for a unit with a given pressing capacity.





### 4. Description of Test Facilities

### 4.1 ATWAL Abrasion Testing High Pressure Grinding Roll

The ATWAL unit is used to determine the wear rates of different ores in High Pressure Grinding Rolls. About 100 kg of material are needed for one test run.

The ATWAL is equipped with smooth solid tyres made of Nihard IV. To ensure nipping of the material between the rolls, the feed is crushed to < 3.15 mm. The rolls are weighed before and after each test, and a specific wear rate is determined from the weight loss divided by the amount of material treated. This specific wear rate is then used to calculate the wear life to be expected on a industrial size HPGR unit.

The ATWAL is choke fed in order to achieve the maximum possible throughput. The grinding force, energy and specific throughput are measured, and the grinding force adjusted, if required.



Data of test unit: Diameter of rolls Width of rolls Speed of rolls Top feed size

: 0.10 m : 0.03 m : 0.46 m/s : 3.15 mm







### 4.2 REGRO Semi-industrial High Pressure Grinding Roll

#### Data of test unit:

Diameter of rolls : 0.7 Width of rolls : 0.2

: 0.71 m : 0.21 m Speed of rolls Top feed size : 0.29 - 1.10 m/s : 16 - 35 mm



The REGRO is equipped with an autogenous wear protection surface in the form of studded liners.

Process data obtained from test work allows the sizing of industrial scale machines.

Data logging:

feed rate, zero gap ,cake thickness preset nitrogen pressure, zero hydraulic pressure operating hydraulic pressure power draw of motors circumferential speed of rolls

These data allow the calculation of process data such as:

- specific throughput rate
- grinding force and specific energy input required for achieving a certain product fineness





### 5. Test Programme & Results

#### 5.1 Test Programme

The following test programme was approved by Wardrop Engineering. The client, Pacific Booker Minerals, witnessed the tests.

| TEST PROGRAMME: 200 KLY    |                                              |                                                               |                            |                               |                         |                                                       |                                                              |                    |
|----------------------------|----------------------------------------------|---------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------|
| Project:<br>WE:            | 2337 2992<br>11815                           |                                                               |                            |                               |                         | Analysis                                              |                                                              | 19/09/2007         |
| Provided materia           | al                                           | < 25 mm 150                                                   | 00 kg                      |                               |                         | PSD, MC, BD                                           | , PD                                                         |                    |
| REGRO feed<br>ATWAL feed   | <mark>&lt; 25 mm<br/>&lt; 3.15 mm</mark>     | 1                                                             |                            |                               |                         | PSD, MC, BD<br>Fineness at 90,                        | 250 and 1000 µi                                              | n                  |
|                            | Test                                         | Feed size                                                     | Quantity                   | Moisture                      | Pressure                | Analysis<br>Centre                                    | Edge                                                         | Discharge          |
| ATWAL                      | A1<br>A2                                     | < 3.15 mm<br>< 3.15 mm                                        | 100 kg<br>100 kg           | 1%<br>3%                      | 4 N/mm²<br>4 N/mm²      |                                                       |                                                              |                    |
| REGRO                      | R1<br>R2<br>R3                               | < 25 mm<br>< 25 mm<br>< 25 mm                                 | 150 kg<br>150 kg<br>150 kg | natural<br>natural<br>natural | 30/25<br>40/30<br>50/40 | <b>PSD</b> , CD<br><b>PSD</b> , CD<br><b>PSD</b> , CD | PSD<br>PSD<br>PSD                                            |                    |
|                            | R4                                           | < 25 mm                                                       | 150 kg                     | 6%                            | 40/30                   | PSD, CD                                               | PSD                                                          |                    |
| Feed preparat              | tion: cont'                                  | d with pro                                                    | duct of R                  | 2                             |                         |                                                       |                                                              |                    |
| Locked-cycle               | R2.2                                         | < 25 mm                                                       | 150 kg                     | natural                       | 40/30                   | <b>PSD</b> , CD                                       | PSD                                                          |                    |
| with 6 mm scree            | n R2.3<br>R2.4                               | < 25 mm<br>< 25 mm                                            | 150 kg<br>150 kg           | natural<br>natural            | 40/30<br>40/30          | <b>PSD</b> , CD                                       | PSD                                                          |                    |
| Screen produ               | cts                                          |                                                               |                            |                               |                         |                                                       |                                                              | PSD                |
| Bond                       | B1 (before)<br>B2 (after)                    | < 3.15 mm<br>< 3.15 mm                                        | 10 kg<br>10 kg             | dry<br>dry                    |                         | *                                                     |                                                              | PSD<br>PSD         |
| LaborMühle                 | LM1<br>LM2                                   | Crush < 6 m<br>R2.3 < 6 mm                                    | 10 kg<br>10 kg             | dry<br>dry                    |                         |                                                       |                                                              |                    |
| Abbreviations and comments |                                              |                                                               |                            |                               |                         |                                                       |                                                              |                    |
| PSD:                       | Particle siz<br>45, 90, 200<br>1, 2, 4, 8, 7 | ce analysis<br><mark>), 250 and 500<br/>11.2, 16, 22.4</mark> | ) μm<br>, 31.5 mm,         | etc.                          |                         | MC:<br>BD:<br>CD:<br>PD:                              | Moisture cor<br>Bulk density<br>Cake density<br>Material den | itent<br>/<br>sity |

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 9 / 20





#### 5.2 ATWAL Wear Test Results

Two ATWAL Wear Tests were carried out on the test material, one on dry material with 1% moisture, and one on wet material with 3% moisture. The results of these tests are given below.

| Test | Material      | Feed size | Moisture | Specific<br>throughput | Spec.<br>grinding force | Specific<br>wear rate |
|------|---------------|-----------|----------|------------------------|-------------------------|-----------------------|
|      |               | [ mm ]    | [%]      | [ ts/( h m³)]          | [ N/mm² ]               | [ g/t ]               |
| A 1  | copper<br>ore | 0 x 3.15  | 1.0      | 118.4                  | 4.0                     | 9.84                  |
| A 2  | copper<br>ore | 0 x 3.15  | 3.0      | 155.8                  | 4.0                     | 15.7                  |

#### Table 2: ATWAL high pressure grinding wear tests

The tests indicated a low to medium wear rates of 9-15 g/t for the material on the ATWAL testing unit. The wear rates given refer to Nihard IV at the specific conditions on the ATWAL abrasion test unit. They do <u>not</u> reflect the wear rate on full size industrial rolls.

Corresponding wear rates on the ATWAL for other ores are given below:

| Other ores | : | very abrasive   | > 40 g/t     |
|------------|---|-----------------|--------------|
|            |   | medium abrasive | 10 to 40 g/t |
|            |   | low abrasive    | < 10 g/t     |

Scale-up to full size industrial rolls takes into account the final roll diameter and speed of the rolls selected, type and length of the studs employed, as well as the feed characteristics of the material to be treated, i.e. size and moisture. The scale-up is based on a data collected on various ores treated in industrial High Pressure Grinding Rolls.

Preliminary estimates for an industrial size unit would indicate a wear life for the rolls of approx. 7000 h.





### 5.3 Semi-industrial High-pressure Grinding Tests on the REGRO

Preliminary REGRO tests were run at three different press forces on dry material. Then locked-cycle tests were run with medium pressure in closed-circuit with a 6mm dry screen. The influence of press force and recycle of the oversize on:

- the specific throughput
- the specific energy input
- the product fineness.

| Test no:   | Moisture    | Specific           | Specific              | Specific              | Specific | Product fineness (center) |       | (center) |
|------------|-------------|--------------------|-----------------------|-----------------------|----------|---------------------------|-------|----------|
|            |             | <b>Press Force</b> | Throughput            | Power                 | Energy   | Cumulative % passing      |       | assing   |
|            | [%]         | [N/mm²]            | [ts/hm <sup>3</sup> ] | [kWs/m <sup>3</sup> ] | [kWh/t]  | 8 mm                      | 2 mm  | 0.025 mm |
| Open- circ | uit         |                    |                       |                       |          |                           |       |          |
| R1         | 1.00        | 2.59               | 229.6                 | 320                   | 1.40     | 76.18                     | 38.80 | 13.70    |
| R 2/2.1    | 1.00        | 3.49               | 218.0                 | 386                   | 1.77     | 80.95                     | 47.60 | 18.40    |
| R3         | 1.00        | 4.22               | 210.6                 | 445                   | 2.11     | 86.17                     | 52.40 | 21.60    |
| R4         | 4.10        | 3.45               | 221.8                 | 438                   | 1.97     | 83.68                     | 48.80 | 20.70    |
| R2.2       | 1.00        | 3.59               | 220.6                 | 383                   | 1.74     | -                         | -     | -        |
| Closed-cir | cuit with 6 | mm screen          |                       |                       |          |                           |       |          |
| R2.3       | 1.00        | 3.69               | 225.8                 | 384                   | 1.70     | 88.87                     | 52.80 | 23.00    |

is given in the Table below.

#### Table 3: Summary of REGRO semi-industrial scale test results.

The feed and product particle size distributions were analysed by dry screening. The discharge of the REGRO was split into a centre and an edge portion. Both portions were analysed separately. Part of the products from the rolls were in the form of compacted flakes, which required de-agglomeration for sizing. The material was de-agglomerated in a rotating drum prior to screen analysis.



The size analysis of the feed and HPGR products are shown in Figures 3-4. The average P80 size achieved in the total discharge was 10 mm; the avg. P80 size in the centre product was 7 mm. The size distributions varied narrowly around these points, indicating that the effect of pressure and recycle on the size reduction was minimal.

The material formed weak flakes, and screening was quite efficient even on a dry basis, Figures 5-6. The circulating load obtained from the dry screening was < 60%, and was expected to be slightly lower from the wet screening.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 11 / 20







Figure 3. Size distributions feed and center products.



Figure 4. Size distributions feed and total discharge.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 12 / 20







Figure 5. Locked-cycle test results, Test R2.3.



Figure 6. Size distributions dry screen products, Test R2.3.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 13 / 20





#### 5.4 Influence of operating conditions.

The influence of the specific press force and moisture on the specific throughput and power draw is shown in Figures 7 and 8. Both press force and moisture had little effect on the throughput. Average specific throughput was 220 ts/hm<sup>3</sup> at 3.5 N/mm<sup>2</sup>. However they had a significant effect on the power draw. Fig. 8. Moisture increased the power draw by 20%.



Figures 7. Variation of specific throughput with pressure.



Figure 8. Variation of specific power with pressure.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 14 / 20





For dry material, the specific power draw at 3.5 N/mm<sup>2</sup> was average for copper ores, 380 kWs/m<sup>3</sup>. Moisture increased this value to about 450 kWs/m<sup>3</sup>. The specific energy mirrored the specific power trend, resulting in 1.7 kWh/t for dry material and 2.0 kWh/t for wet material at a press force of 3.5 N/mm<sup>2</sup>.



Figure 9. Variation of specific energy with pressure.





Figures 10 and 11 show the effect of grinding pressures on the product fineness. At pressures > 3.5 mm, there was little increase in product fineness, Figure 10. The optimum press force necessary was found to be 3.5 N/mm<sup>2</sup>, see Figure 11.



Figure 10. Variation of Product fineness with pressure.



Figure 11. Variation of Product fineness with pressure.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 16 / 20





#### 6. **Grinding Tests**

#### 6.1 **Standard Bond Tests**

Two standard Bond grinding tests were performed on the material: one on the original feed; the second on product of Test R 2.3 (from closed-circuit with dry screening). The results are given in the Table below. Size analyses of the Bond test feed and products are shown in Figures 12 & 13. The value obtained on the original feed was 17.8 kWh/mt. Treatment in HPGR resulted in a 10% reduction in the WI to 16.1 kWh/t.

#### Table 4. Summary of Standard Bond Test Results.

|              | Pi | Gbp  | F80  | P80  | Wi (st) | Wi (mt) |
|--------------|----|------|------|------|---------|---------|
| Original ore | 90 | 0.92 | 2541 | 64.7 | 16.2    | 17.8    |
| R2.3 Product | 90 | 1.06 | 2108 | 64.5 | 14.6    | 16.1    |



Bond Test on HPGR Product 100.0 90.0 Cumulative % passing 80.0 70.0 - Feed • 60.0 Product 50.0 40.0 30.0 20.0 0.01 0.1 10 1 Particle size, mm

Figure 13.

Figure 12.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 17/20





#### 6.2 POLYSIUS LABMILL Grinding Tests

The LABMILL grinding test was designed specifically for testing HPGR products without precrushing of the product for the test. The test is conducted dry in a 750 mm diam. x 450 mm wide ball mill on 7.5 litres of material. The feed, up to 30 mm in size, is ground stepwise using different ball gradings. The ball grading for each step is selected according to the material fineness. The energy consumption and material fineness is determined after each step.

The results are evaluated by plotting the specific energy consumption, in kWh/t, against the product fineness at a given size. Usually two sizes are selected, 90  $\mu$ m and 200  $\mu$ m. Linear regression lines are drawn through the points, and estimates are made of the energy required to achieve 80% passing a given size.

A comparison is then made between the energy required for the original feed and for the HPGR product, and the energy savings are calculated from the results. To even up the comparison, the feed was crushed to the top size of the product.



Industrial energy requirements may be calculated from the test results by applying scale-up factors. The LABMILL test is able to provide a realistic comparison of the ball mill energy required for materials with different size distributions. A summary of the LABMILL test results is given in the Table below.

|             | LABMILL   |                      |       |       |      |  |  |  |
|-------------|-----------|----------------------|-------|-------|------|--|--|--|
| GRIND       | HPGR Feed | HPGR Feed HPGR Prod. |       |       |      |  |  |  |
| 80% < 200µm | 7.07      | kWh/t                | 6.06  | kWh/t | 14.2 |  |  |  |
| 80% < 90µm  | 10.62     | kWh/t                | 9.27  | kWh/t | 12.7 |  |  |  |
| 100% < 90µm | 13.76     | kWh/t                | 12.28 | kWh/t | 10.8 |  |  |  |

Table 5. Summary LABMILL test results.

These indicated a potential energy saving at a P80 of 200  $\mu$ m of 14% and at a P80 of 90  $\mu$ m of 12%. Size analyses of the feed size distributions used in the tests are shown in Figure 14.

The energy-size relationships obtained in the tests are shown in Figure 15.

The results indicated higher energy savings than the Bond Tests. The difference in the results is attributable to the larger amount of fines generated in the product by the HPGR, which is not accounted for in the Bond calculations.







Figure 14. Feed to the LABMILL tests.



Figure 15. LABMILL energy vs product fineness.

L:\Projects\00\_Minerals\2220 Mining Projects\02 HPGR and Ball Mill Projects\7959-Morrison\TESTS\HPGR Test Report - Morrison - Pacific Booker 1.doc 19 / 20





#### 7. Conclusions

- 1. The material was found to be of low to medium abrasiveness, ATWI index 9-15 g/t. The wear life of the rolls was estimated at 7000 h.
- The size reduction achieved was better than average for copper ores, > 80% < 8.0 mm, >50% < 2 mm, >20% < 0.2 mm. Increasing pressure had a minimal effect. The max specific press force necessary was 3.5 N/mm<sup>2</sup>.
- 3. The specific throughput for design purposes was 220 ts/hm<sup>3</sup>. Recycling of oversize in a closed-circuit operation had no significant effect.
- 4. The net specific energy consumption was 1.7 kWh/t at a specific press force of 3.5 N/mm<sup>2</sup> for dry material, and 2.0 kWh/t for wet material with 4-5% moisture content.
- 5. The material did not form competent flakes on pressing, and could be screened with relatively high efficiency.
- 6. The Bond Work index of the sample tested was 17.8 kWh/t before and 16.1 kWh/t after HPGR. Pressing in the HPGR resulted in a 10% weakening of the material, through the formation of micro-cracks.
- 7. LABMILL tests indicated potential energy savings in the order of 14% at a P80 size of 200  $\mu$ m and 12% at 90  $\mu$ m from the greater amount of fines created by the HPGR.